Protective role of neuronal KATP channels in brain hypoxia.
نویسنده
چکیده
During severe arterial hypoxia leading to brain anoxia, most mammalian neurons undergo a massive depolarisation terminating in cell death. However, some neurons of the adult brain and most immature nervous structures tolerate extended periods of hypoxia-anoxia. An understanding of the mechanisms underlying this tolerance to oxygen depletion is pivotal for developing strategies to protect the brain from consequences of hypoxic-ischemic insults. ATP-sensitive K(+) (K(ATP)) channels are good subjects for this study as they are activated by processes associated with energy deprivation and can counteract the terminal anoxic-ischemic neuronal depolarisation. This review summarises in vitro analyses on the role of K(ATP) channels in hypoxia-anoxia in three distinct neuronal systems of rodents. In dorsal vagal neurons, blockade of K(ATP) channels with sulfonylureas abolishes the hypoxic-anoxic hyperpolarisation. However, this does not affect the extreme tolerance of these neurons to oxygen depletion as evidenced by a moderate and sustained increase of intracellular Ca(2+) (Ca(i)). By contrast, a sulfonylurea-induced block of K(ATP) channels shortens the delay of occurrence of a major Ca(i) rise in cerebellar Purkinje neurons. In neurons of the neonatal medullary respiratory network, K(ATP) channel blockers reverse the anoxic hyperpolarisation associated with slowing of respiratory frequency. This may constitute an adaptive mechanism for energy preservation. These studies demonstrate that K(ATP) channels are an ubiquituous feature of mammalian neurons and may, indeed, play a protective role in brain hypoxia.
منابع مشابه
Recombinant cardiac ATP-sensitive potassium channels and cardioprotection.
The ATP-dependent potassium channels (KATP channels) were originally identified in isolated membrane patches prepared from guinea pig ventricular myocytes by Noma in 1983. Since their discovery in cardiac cells, KATP channels have also been discovered in many other tissues, such as smooth muscle, skeletal muscle, pancreas, and brain, in which they have been shown to couple cellular metabolism t...
متن کاملNeuroprotective Effect of Mitochondrial Katp Channel Opener Upon Neuronal Cortical Brain of Rat Population
Purpose: So far there is no effective drug therapy to prevent neuronal loss after brain stroke. In the present study we studied effects of The Mitochondrial K-ATP channel regulators on neuronal cell population and neurological function after ischemia reperfusion in the rat. Materials and Methods: Rats temporarily subjected to four vessels occlusion for 15 minutes followed by 24 hours reperfusi...
متن کاملBAD and KATP channels regulate neuron excitability and epileptiform activity
Brain metabolism can profoundly influence neuronal excitability. Mice with genetic deletion or alteration of Bad (BCL-2 agonist of cell death) exhibit altered brain-cell fuel metabolism, accompanied by resistance to acutely induced epileptic seizures; this seizure protection is mediated by ATP-sensitive potassium (KATP) channels. Here we investigated the effect of BAD manipulation on KATP chann...
متن کاملA role for neuronal K(ATP) channels in metabolic control of the seizure gate.
ATP-sensitive K+ (KATP) channels are expressed in many different tissues including the brain,where they couple energy metabolism to cellular excitability.Although their classical role in insulin secretion in pancreatic β-cells is well understood, their neuronal function remains unclear.Now,an important study using knockout mice provides clear evidence that neuronal KATP channels are crucial pla...
متن کاملExploring the role and inter-relationship among nitric oxide, opioids, and KATP channels in the signaling pathway underlying remote ischemic preconditioning induced cardioprotection in rats
Objective(s): This study explored the inter-relationship among nitric oxide, opioids, and KATP channels in the signaling pathway underlying remote ischemic preconditioning (RIPC) conferred cardioprotection. Materials and Methods: Blood pressure cuff was placed around the hind limb of the animal and RIPC was performed by 4 cycles of infla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 207 Pt 18 شماره
صفحات -
تاریخ انتشار 2004